2,180 research outputs found

    Superconformal spaces and implications for superstrings

    Full text link
    We clarify some properties of projective superspace by using a manifestly superconformal notation. In particular, we analyze the N=2 scalar multiplet in detail, including its action, and the propagator and its super-Schwinger parameters. The internal symmetry is taken to be noncompact (after Wick rotation), allowing boundary conditions that preserve it off shell. Generalization to N=4 suggests the coset superspace PSU(2,2|4)/OSp(4|4) for the AdS/CFT superstring.Comment: 19 pages, no figures; v2: fixed sign, added note & reference; v3: added note & references, version to appear in Physical Review

    Covariant Harmonic Supergraphity for N = 2 Super Yang--Mills Theories

    Get PDF
    We review the background field method for general N = 2 super Yang-Mills theories formulated in the N = 2 harmonic superspace. The covariant harmonic supergraph technique is then applied to rigorously prove the N=2 non-renormalization theorem as well as to compute the holomorphic low-energy action for the N = 2 SU(2) pure super Yang-Mills theory and the leading non-holomorphic low-energy correction for N = 4 SU(2) super Yang-Mills theory.Comment: 17 pages, LAMUPHYS LaTeX, no figures; based on talks given by I. Buchbinder and S. Kuzenko at the International Seminar ``Supersymmetries and Quantum Symmetries'', July 1997, Dubna; to be published in the proceeding

    Supersymmetric sigma models and the 't Hooft instantons

    Get PDF
    Witten's linear sigma model for ADHM instantons possesses a natural (0,4)(0,4) supersymmetry. We study generalizations of the infrared limit of the model that are invariant under (4,4)(4,4) supersymmetry. In the case of four space-time dimensions a background with a conformally flat metric and torsion is required. The geometry is specified by a single real scalar function satisfying Laplace's equation. It gives rise to 't Hooft instantons for the gauge group SU(2)SU(2), instead of the general ADHM instantons for an SO(n)SO(n) gauge group in the case (0,4)(0,4).Comment: 11 pages, Latex fil

    Nonlinear acoustic and microwave absorption in disordered semiconductors

    Full text link
    Nonlinear hopping absorption of ultrasound and electromagnetic waves in amorphous and doped semiconductors is considered. It is shown that even at low amplitudes of the electric (or acoustic) field the nonlinear corrections to the relaxational absorption appear anomalously large. The physical reason for such behavior is that the nonlinear contribution is dominated by a small group of close impurity pairs having one electron per pair. Since the group is small, it is strongly influenced by the field. An external magnetic field strongly influences the absorption by changing the overlap between the pair components' wave functions. It is important that the influence is substantially different for the linear and nonlinear contributions. This property provides an additional tool to extract nonlinear effects.Comment: correction : misspelled name in references correcte

    Quantum Friction of Micromechanical Resonators at Low Temperatures

    Full text link
    Dissipation of micro- and nano-scale mechanical structures is dominated by quantum-mechanical tunneling of two-level defects intrinsically present in the system. We find that at high frequencies--usually, for smaller, micron-scale structures--a novel mechanism of phonon pumping of two-level defects gives rise to weakly temperature-dependent internal friction, Q−1Q^{-1}, concomitant to the effects observed in recent experiments. Due to their size, comparable to or shorter than the emitted phonon wavelength, these structures suffer from superradiance-enhanced dissipation by the collective relaxation of a large number of two-level defects contained within the wavelength.Comment: To apear in Phys. Rev. Let

    Exact propagators in harmonic superspace

    Full text link
    Within the background field formulation in harmonic superspace for quantum N = 2 super Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super Yang-Mills theory.Comment: Latex, 12 pages; V2: a reference added; V3: typos in eq. (3) corrected, the version to appear in PLB; V4: typos in eq. (47) correcte

    Nonlinear absorption of surface acoustic waves by composite fermions

    Full text link
    Absorption of surface acoustic waves by a two-dimensional electron gas in a perpendicular magnetic field is considered. The structure of such system at the filling factor Μ\nu close to 1/2 can be understood as a gas of {\em composite fermions}. It is shown that the absorption at Μ=1/2\nu =1/2 can be strongly nonlinear, while small deviation form 1/2 will restore the linear absorption. Study of nonlinear absorption allows one to determine the force acting upon the composite fermions from the acoustic wave at turning points of their trajectories.Comment: 7 pages, 1 figure, submitted to Europhysics letter

    Relating harmonic and projective descriptions of N=2 nonlinear sigma models

    Full text link
    Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic action and the symplectic structure of the projective action naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkahler target spaces. For the two examples of Taub-NUT and Eguchi-Hanson, we show how to derive the projective superspace solutions from the harmonic superspace solutions.Comment: 25 pages; v3: typo fixed in eq (1.36
    • 

    corecore